熊本県秩父帯下部白亜系砥用層の層序と構造

河野 知治1・田中 均2・高橋 努3・利光 誠一4・森 大輔5

（1）熊本大学大学院教育学研究科 〒860-8555 熊本県熊本市北区
（2）熊本大学教育学部 〒860-8555 熊本県熊本市北区
（3）八千代エンジニアリング㈱ 〒153-8639 東京都目黒区中目黒
（4）産業技術総合研究所 〒305-8567 茨城県つくば市東
（5）（財）福岡県社会保険医療協会 〒826-0023 福岡県田川市上本町

Stratigraphy and Structure of the Lower Cretaceous Tomochi Formation in the Chichibu Terrane, Kumamoto Prefecture

Tomoharu KAWANO, Hitoshi TANAKA, Tsutomu TAKAHASHI, Seiichi TOSHIMITSU and Daisuke MORI

Abstract

In the Chichibu Terrane of the Yatsushiroyo Mountains in Kumamoto Prefecture, the Lower Cretaceous System, called Tomochi Formation, distribute. This paper mainly deals with the outline of litho-, biostratigraphy, and geological structure of this formation.

On the basis of lithology and fossils, this formation is divided into three members, namely the lower, middle and upper. The lower member (at least 170m) is characterized by massive conglomerate. Conglomerates contain well-rounded boulders and cobbles of various kinds of igneous rocks and sedimentary rocks.

The middle member (up to 310m) consists of alternation of dark gray sandy shale and shale, with interbeds of a few slumpy coarse sediments. Well-preserved molluscan fossils were collected from the calcareous part of the sandy shale. Marine bivalves, belonging to the Hibihara type fauna, and several Upper Aptian type ammonites are found.

The upper member (up to 430m) is composed mainly of rhythmic alternation of sandstone and shale. Small-scale slump structures are observable at several horizons. The shale contains well-preserved marine bivalves, together with Upper Aptian type ammonite.

The ammonites collected from the Tomochi Formation indicate Upper Aptian. From the bivalve's faunal aspects and lithological character, the formation is comparable to the Upper Hibihara Formation of the Monobegawa Group in Shikoku.

Key word: Kumamoto Prefecture, Chichibu Terrane, Tomochi Formation, Monobegawa Group, Ammonite, Bivalve

はじめに

熊本県南部の秩父帯（黒瀬川帯）に位置する八代山地およびその周辺地域には、下部白亜系の堆積岩類が広く分布している。その下部白亜系の層序や構造については、松本・勘米良（1964）、石井・小西（1964）、松本・松本（1964）などによって研究されている。その中の1つの層準である砥用層は、松本（1964）により、西は中央町村から東は矢部町地域に至る白柾床-八代構造線以南の地域と、球磨川流域の八代市南部に分布する白亜系グリヤーク統（下部白亜系下部）の地層に対して命名された地層である。しかしその後の研究で、産出化石に基づく地質時代の違いにより、砥用町付近に分布する白亜系宮古統（下部白亜系上部）の地層を砥用層として再定義するとともに、球磨川流域の白亜系グリヤーク統の地層を砥用層から新たに分離し、こ
表1. 宮地帯物部川層群相当層の研究史

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBIAN</td>
<td>Tomochi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Tomochi Fm.</td>
</tr>
<tr>
<td>APTIAN</td>
<td>Tomochi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Tomochi Fm.</td>
</tr>
<tr>
<td>BARREMIAN</td>
<td>Tomochi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Miyagi Fm.</td>
<td>Tomochi Fm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kumamoto Prefecture

れを宮地層とした（松本、1974）。また、田代・池田（1987）は、化石フォーマの特性とその地質時代および岩相から、宮地層はアプチアン、礫層層はアルピアンの層相として四国の物部川層群日比原層に対比（表1）。

これらのほかにも上田ほか（1976）や田中・倉村（1976）などの、宮地層、礫層層についての研究が行われてきているが、両層の統一的な研究はまだなされておらず、また両層の境界についても不明のままであった。

今回、宮地層の東部、すなわち東陽村南から泉村、中央町、礫層層を経て矢部町薬付近に至る東西約30km、幅1～2kmに分布している礫層層についての調査がほぼ完了したので、その層相と構造、および化石相の概要について報告する。

本研究を進めるにあたり、高知大学名誉教授の田代正之先生には資料を活用いただき、また有益な助言をいただいた、熊本大学教育学部教授の渡辺一徳先生には貫入岩について御指導頂いた、産業技術総合研究所の篠原猶氏には先白亜系の地質情報や白亜系との不整合断層に関する情報を提供していただいた。筑波大学大学院の一瀬とくめ、九州大学大学院の尾上哲治、熊本大学大学院の坂本大輔、および同大学4年生の野村恒平諸氏には当地域の地質調査や化石採集に協力していただいた。以上の方々に深くお礼申し上げる。

礫層層周辺の地質

本報告の調査地域は、矢部町西方から東陽村北方にかけての東西に細長い一帯である（図1）。この地域の下部白亜系は、東北東〜西南西に伸びる2本の構造線、すなわち北は臼杵〜八代構造線、南は錦城構造線に挟まれた幅約1〜2kmの宮地層に分布している。この宮地層は、矢部町西方の薬付近から東北〜西南西方向に走る断層によって切られており、それ以東には存在しない。なお、本調査地域の宮地層に細長く帯状に分布する礫層層は、北側に向かって新しい時代の堆積物が分布する傾向にある。

臼杵〜八代構造線の北側には、宮地旧トーナル岩が総合ダムサイトの上流域に、竜峰山層群の結晶鉱石灰岩がダムサイトの西側にそれぞれ分布している。一方、蛇紋岩をともなう鉱谷構造線沿いには、斑れい岩、閃降岩、酸性凝灰巌、チャット、含礫泥岩などの黑姫山または鉱谷は古期岩層が分布している。礫層層はこれら古期岩層を基盤として断層関係、一部不整合関係で分布している。また総合ダム、津留川、水川沿いには、所々に阿蘇火砕流堆積物が礫層層や古期岩層を覆って分布している。

礫層層の地質時代は、産出するアンモナイトから最終期アプチアンと考えられている（Matsumoto et al., 1968; Matsumoto and Murakami, 1991）。また、Hayami（1968）は礫層層産三枚貝化石相を検討した結果、Matsumoto et al.（1968）の礫層層の時代論と調和的なる結果が得られましたとされている。

当調査地域全体の地質図を図1の上段に示す。なお、下段の図の中の2、3、4はルートマップを作成した地域。a〜jは図5の柱状図を作成したルート、A〜Hは図6の断面図を作成した地点、Tok-で示される数字は化石産出地点をそれぞれ示す。

礫層層について

礫層層は岩相の違いにより3部層に区分できる。すなわち、巨礫岩系石の下部層、砂質頁巌系石の中部層、そして砂岩巌泥系石の上部層である。これらの地層は南部に下位を位置として整合関係で形成している。以下に、ルートマップを示しながら、各部層の岩相を述べる。なお、ルートマップ中の数字は露頭番号である。

1. 下層

(1) 分布

礫層層下部層は、礫層層中央部の石野付近から東陽村北部の付近にかけて、礫層層の南縁部に沿って分布している（図1）。とくに永富地域には厚く分布する（図3の①）。分布の東端は断層により欠損しており（図2の①），それより東には小規模な露頭が1箇所存在するだけで、それ以外には分布しない。一方、西の方では途中で途切れているがまた調査地域の西端まで続いている。

(2) 岩相・層序

下層部と古期岩層とはほとんどが断層関係で、永富地域における一部、不整合関係が確認できた（図3の②および図版2-1）。本部層は全体として厚い礫岩層からなり（図版2-2）、そのほとんどが巨礫岩層だが、所々に中〜細礫岩層、または粗粒砂岩を挟む層準がある（図3の③）。礫層層は円〜円円
図1. 調査位置図、および全域地質図
下段の図のうち、青い枠で囲った部分はルートマップを示す地域。黄緑色の線は柱状図をとったルート、橙色で示した部分は断面図をとった部分。そして赤色の点は化石産地を示す。なお、数字を○で囲った地点の化石は板石である。また、数字を（）で囲った産地の化石は熊本大学教育学部地学教室に保管されていた田中・谷村（1976）、速見・元路（1967）の資料を用い当て頂いた。
図2．石野地域のルートマップ
1. 輝岩 2. 岩漿岩 3. 砂岩泥岩互層 4. 泥岩 5. 石灰岩 6. 緑色岩
7. 酸性凝灰岩 8. 阿蘇火成岩相物質 9. 化石産地 10. 植物残
灰岩の図は、中層部に含まれる。輝岩を伴うスラント層の延
長を示す。
数字を（）で囲った産地の化石は熊本大学教育学部地理学教室に保存
されている甲野・谷村（1976）、遠賀・元島（1987）の資料を使わせて
頂いた。

図3．永置地域のルートマップ
1. 輝岩 2. 岩漿岩 3. 砂岩泥岩互層 4. 泥岩 5. 石灰岩
6. びん岩またはほん岩 7. 組凝灰岩 8. 緑色岩 9. 酸性凝灰岩
10. 阿蘇火成岩相物質 11. 化石産地

図4．下敷地域のルートマップ
1. 輝岩 2. 岩漿岩 3. 砂岩泥岩互層 4. 泥岩 5. 石灰岩
6. びん岩またはほん岩 7. 組凝灰岩 8. 緑色岩
9. 阿蘇火成岩相物質
図5。各ルートの柱状図と模式柱状図
1. 大礫～巨礫礫岩 2. 細礫～中礫礫岩 3. 砂岩 4. 砂岩泥岩互層 5. 泥岩
6. 秭父疊層古期岩類 7. 断層 8. 不整合 9. 三枚貝化石 10. アンモナイト

図6。断面図
1～3. 瓽用層（1. 上部層 2. 中部層 3. 下部層） 4. 阿蘇火成凝灰堆積物 5. 竜嶺山層群
6. 秭父疊層古期岩類 7. 蛇紋岩 8. ひん岩またははん岩 9. 潮曲輪
（断面図A～Bの灰色の曲線は、図2の礫岩を伴うスランプ層を示す。）
礫からなり、淘汰は不良である。また基質は粗粒砂岩からなる。礫種は花崗岩や緑色岩が多く、それらの礫径も他の礫種と比較すると大きい傾向にある。そのほかにも砂岩、泥岩、チャート、酸性凝灰岩などが確認された。二枚貝などの化石は未発見である。本層の層厚は最大約170mを呈するが、膨脹が著しい。

2. 中部層

(1) 分布

砥用層中部層は、調査地域東部の矢部町月目付近から西部の東陽村南部まで膨脹を繰り返しながら細長く連続して分布する（図1）。

(2) 岩相・層序

中部層は下部層の上に整合関係で重なっているが、その関係が見られる地域は少なく（図3の④および図4の①）、ほとんどの地域で断層関係となっている。また、この断層沿いには一部、じん岩はやすく岩が貫入しているところがある（図3の③、⑤および図4の②など）。本層は下部層の上位に薄い砂岩を挟み、すぐに節理構造なターゲティング性の暗灰色砂質泥岩の互層を厚く続く（図版2-5）。しかし図2の②、③に見られるように、礫岩や粗粒砂岩を数層準挟むところもあり、その中にはカキや巻貝、サンゴ、まれに二枚貝の化石を含む細～中型礫岩も見られる。これらの粗粒岩相は、周囲の泥岩から浮遊生の二枚貝やアンモナイトの化石が産出すること（図2の④および図3の③など）、また礫岩の層や基質が淘汰不良であることなどから、スタンプ性の堆積物であると思われる。これらの礫岩層は、円～亜円礫からなり基質が粗粒砂岩であることや、礫種が花崗岩や緑色岩、砂岩、泥岩、チャート、酸性凝灰岩からなっているなど、下部層の礫岩と似たような特徴を持っているが、場所によって礫径が変化する富厚な点や石灰岩の礫を少量含んでいる点で異なっている。

中部層はこのようなスタンプ性の粗粒岩相を数層準挟んでいるが、全体としては厚い砂泥岩の互層で特殊な構造物、また石灰質の層も見られ、その付近に二枚貝やアンモナイトの化石が産出する。本層の層厚は約310mである。

(3) 産出化石および地質時代

中部層の石灰質な層準付近より、保存のよい二枚貝やアンモナイトなどの化石が産出する（Tok-03, 08, 16, 24）。中部層から産出する化石を表2、3に示す。このうち、Nuculopsis isidoensis, Portlandia sp. cf. sonchuensis, Cosmetodon tomochiensis, Neitha ficalholi, Parvamussium tosaense, Limatula nagaoi, Myrtica monobeeana, Astarte kochiensisは、いずれも東西川層群から産出する化石である。また、Acanthohoplites sp., Cheloniceras sp., Diadochoceras sp. cf. D. nodosocostatiforme, Marshallites sp. cf. M. miyakoensisなどのアンモナイトが示す地質時代はアブチンアン后期である。

3. 上部層

(1) 分布

砥用層上部層は、本調査地域の北部断層帯全域に幅広く分布している。調査地域東端の矢部町月目付近では、東北〜東関西側に沿う断層によって北西側の砥用層と南部側の古期台岩とと接している（図1）。

(2) 岩相・層序

上部層は、中部層の上に整合して重なっており、その関係は図3の⑥で確認される。上部層は、種々の厚さのターゲティング性の砂質泥岩層を束状または層状構造で特徴付けられ（図版2-7）、中部層の比較的厚い泥岩層から二枚貝やアンモナイトの化石が稀に産出する。

上部層分布域の北側は白い〜白灰色の火山岩で、下部層の石英岩、石灰岩、泥岩と接する点が突出し、その付近に二枚貝やアンモナイトの化石が産出する（図3の⑨など）。本層の層厚は約430m以上である。

(3) 産出化石および地質時代

上部層からは、数は少ないが比較的保存のよい二枚貝やアンモナイトの化石が産出している（Tok-15, 17, 19, 20, 22, 23, 30, 33）。筆者らが確認した化石を表2, 3に示す。このうち、Dufrenoyia sp. cf. D. lurensisというアンモナイトが示す地質時代は、アブチン（D. lurensisはアブチンアン後期）である。

調査地域の地質構造

砥用層は全体として北方に傾く。下部層から上部層まで整合関係で重なっているが、一般的な分布は東北東〜東関西で、北に高角度で傾斜している。しかし、北方に上部層のまま傾斜が南に大きく傾く逆転構造が государственный周辺に存在する（図3）。これは、砂岩や砂質泥岩中に観察される経度変更やクロスターラミック、層理面基底部にみられる底部などの堆積構造から上部不整合を決定している。なお、泥岩などの細粒堆積物では肉眼での判断が困難であるため、それらの岩石薄片を作成し絶縁下で上部不整合を得た。

石野地域では中部層中に一組の大きな背斜〜向斜構造が存在し、それに伴う逆転構造が向斜軸の南側と背斜軸の北側に見られる（図2）。また、この地域には褶曲構造が存在するために地層の繰り返しがあり、そのため中部層が幅広く分布している（図1）。また他地域の中部層中にはあまり見られないランプ状の粗粒岩相が多数観察されることから、この地域は砥用層が堆積した堆積盆地の駆動付近にあたると考えられる。さらに当地域の砂岩泥岩互層で特徴づけられる上部層には、高角度の小断層群の発達とス
表 2. 各化石産地から産出する化石リスト

<table>
<thead>
<tr>
<th>Fossils</th>
<th>Localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucula sp.</td>
<td>Tok-0.3</td>
</tr>
<tr>
<td>Nuculopsis (Palaenucula) isidoensis</td>
<td>Tok-0.4</td>
</tr>
<tr>
<td>Nuculopsis sp.</td>
<td>Tok-0.6</td>
</tr>
<tr>
<td>Portlandia (Portlandia?) sp. cf. P. sanchuensis</td>
<td>Tok-0.8</td>
</tr>
<tr>
<td>Mesosaccella (?) sp. aff. M. choshiensis</td>
<td>Tok-1.0</td>
</tr>
<tr>
<td>Mesosaccella sp.</td>
<td>Tok-1.1</td>
</tr>
<tr>
<td>Nanonavis sp.</td>
<td>Tok-1.5</td>
</tr>
<tr>
<td>Cosmetodon tomochiiensis</td>
<td>Tok-1.6</td>
</tr>
<tr>
<td>Cosmetodon? tomochiiensis</td>
<td>Tok-1.7</td>
</tr>
<tr>
<td>Neithia (Neithia) ficalhoi</td>
<td>Tok-1.8</td>
</tr>
<tr>
<td>Chlamys sp. aff. C. shikokuensis</td>
<td>Tok-1.9</td>
</tr>
<tr>
<td>Parvamussium sp. cf. P. hinagense</td>
<td>Tok-2.0</td>
</tr>
<tr>
<td>Parvamussium tosaense</td>
<td>Tok-2.1</td>
</tr>
<tr>
<td>Parvamussium sp. cf. P. tosaense</td>
<td>Tok-2.2</td>
</tr>
<tr>
<td>Parvamussium sp.</td>
<td>Tok-2.3</td>
</tr>
<tr>
<td>Plicatula sp. cf. P. kiicnsis</td>
<td>Tok-2.4</td>
</tr>
<tr>
<td>Plicatula sp.</td>
<td>Tok-2.5</td>
</tr>
<tr>
<td>Ctenoides? sp.</td>
<td>Tok-2.6</td>
</tr>
<tr>
<td>Limatula nagoai</td>
<td>Tok-2.7</td>
</tr>
<tr>
<td>Limatula sp. cf. L. nagoai</td>
<td>Tok-2.8</td>
</tr>
<tr>
<td>Pterotrignonia sp.</td>
<td>Tok-2.9</td>
</tr>
<tr>
<td>Myrtea (?) monobeana</td>
<td>Tok-3.0</td>
</tr>
<tr>
<td>Myrtea (?) sp.</td>
<td>Tok-3.1</td>
</tr>
<tr>
<td>Lucinoma sp.</td>
<td>Tok-3.2</td>
</tr>
<tr>
<td>Astarte (Trautsholdia) kochiensis</td>
<td>Tok-3.3</td>
</tr>
<tr>
<td>Eriphyla (Eriphyla) sp.</td>
<td>Tok-3.4</td>
</tr>
<tr>
<td>Panopea sp.</td>
<td>Tok-3.5</td>
</tr>
<tr>
<td>Platymyoidia sp.</td>
<td>Tok-3.6</td>
</tr>
<tr>
<td>Acanthohoplites sp.</td>
<td>Tok-3.7</td>
</tr>
<tr>
<td>Bhimaites? sp.</td>
<td>Tok-3.8</td>
</tr>
<tr>
<td>Cheloniceras (Epicheloniceras) sp.</td>
<td>Tok-3.9</td>
</tr>
<tr>
<td>Diadochoceras sp.</td>
<td>Tok-4.0</td>
</tr>
<tr>
<td>Dufrenoyia sp. cf. D. lurensis</td>
<td>Tok-4.1</td>
</tr>
<tr>
<td>Marshallites sp. cf. M. miyakoensis</td>
<td>Tok-4.2</td>
</tr>
</tbody>
</table>

Tok- (17)〜(25)までは熊本大学教育学部地学教室に保管されていた田中・谷村 (1976), 遠越・元島 (1967) の資料を使わせて頂いた。
表3. 砦用層およびその相当層から産出す二枚貝化石リスト

<table>
<thead>
<tr>
<th>Fossils</th>
<th>TM</th>
<th>TU</th>
<th>TS</th>
<th>HL</th>
<th>HU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucula sp.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Nuculopsis (Palaeonucula) isidoensis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Portlandia (Portlandia?) sp. cf. P. sanchuensis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Mesosaccella (?) sp. aff. M. choshiensis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Nanonavis sp.</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmetodon tomochiensis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Neithaea (Neithaea) ficalhoi</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Clamys sp. aff. C. shikokuensis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Parvamussiwm sp. cf. P. hinagense</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Parvamussiwm sp. cf. P. tosaense</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Plicatula sp. cf. P. kiiensis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ctenoides? sp.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Limatula nagoai</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Pterostrigonia sp.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Myrtrea (?) monoboeana</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Lucinoma sp.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Astarte (Traftsholda) kochiensis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Eriphyla (Eriphyla) sp.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Panopea sp.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Platynymidea sp.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

TM: 砦用層中部層 TU：砧用層上部層 TS：土佐加茂層
HL：日比原層下部層およびその相当層 HU：日比原層上部層およびその相当層
土佐加茂層の化石はTashiro and Matsuda (1986) を, 日比原層下部層, 上部層およびそれらの相当層の化石は田代 (1993) を参考にした。

ランプ諸曲が幾つか認められる。
そのほか砧用層分布域内において, 東西方向に延びる特徴的な断層が2種類認められる, その1つは
砧用層下部層中やそれと中部層との境界部に発達す
る断層で, 断層沿いのひん岩やはん岩が貫入してい
る. なお, このはん岩の顕微鏡写真を図版 2-3, 4
に示す. 一方, 蛭紋岩を伴う断層が, 砧用層中部層
と上部層の境界部や上部層中に観察される (図 3 の
⑦, 図版 2-6) の断層沿いには基盤岩を構成して
いる酸性凝灰岩や緑色岩等も観察される (図 3 の⑧)。
そしてそれらの断層を切るように南北性の断層が多く
発達している。

議論
1. 対比
砧用層中部層および上部層から筆者らが確認した
二枚貝化石を表2, 3に示す. これら二枚貝化石は,
いずれも四国の物部川層群およびその相当層から産
出の報告が多くあるものである. また前述したよう
に, 砧用層の地質年代はアンモナイト化石により後
期アブチアンが示される. しかしながら, 砧用層の
二枚貝化石相から判断すれば, アブチアンの動物群
Portlandia (Portlandia?) sp. cf. P. sanchuensis, Neithaea
(Neithaea) ficalhoi, Myrtrea (?) monoboeana, Astarte
(Traftsholda) kochiensisを含むものの, アルビアンを
強く示唆するCosmetodon tomochiensis, Parvamussiwm
sp. cf. P. hinagense, Parvamussiwm sp. cf. P. tosaenseが
産出しているため, 砧用層の地質年代は最前期アル
ビアンを含むと思われる. なお, これらアルビアン
型の二枚貝化石は, 四国の佐賀地域に分布するアル
ビアンの土佐加茂層上部層や四つ白層 (Tashiro and
Matsuda, 1986) および物部地域に分布するアルビア
ンの日比原層上部層 (田代, 1993) からそれぞれ報告
されている (表 3). 砧用層は, その岩相および産出
化学から判断して、四国の土佐加茂層上層部および日比原層上部層の下部に対比される。
2. 砂岩層に発達する2種類の東西性層断層について
砂岩層分布域内の断層には、断層に沿う岩層やはん岩などの貫入岩を伴うものと、蛇紋岩を伴うもの、
の2種類が観察される。一般に臼杵－八代構造線
の南側には前者のような多くの貫入岩が分布し、そ
れらは文庫岩層、黒雲母はん岩、角閃石安山岩、斜
長石はん岩などからなる。それらの多くは新第三紀
に活動したと考えられている（松本・勘米良、
1964）。したがって、当調査地域内のはん岩やはん
岩などの貫入岩を伴う断層は、新第三紀の臼杵－八
代構造線（中央構造線）の活動と密接に関連して形
成されたと考えられる。一方、後者のような蛇紋岩
を伴う断層は、砂岩層分布域の南側の穂谷構造線沿
いに多く観察され、この蛇紋岩は黒瀬川層を特徴づ
ける指標となっている。また、蛇紋岩を伴う黒瀬川
構造帯は、ジラ紀後期からアルビアンに左横ずれ
運動によって形成された地質体と考えられている
（田代、1985, 1996）。調査地域内のこのような断層
は、黒瀬川構造帯の左横ずれ運動と密接に関連して
ほぼアルビアンの時期に形成されたと考えられる。
なお、白亜系分布域内に蛇紋岩を伴う黒瀬川構造帯
が認められる場合には、それを挟んで岩相および二
枚貝化石相が大きく異なる場合がある（例えば、四
国の大和地域（田代、1985）、大分県の栗駒山地域
（田中ら、1989）など）が、当調査地域内の蛇紋岩を
伴う断層は、それを挟んだ地質体の岩相や化石相に
大きな変化がない。このため、断層に沿った変位は
大きさは無かったと思われる。

まとめ
1. 砂岩層は岩相により、巨礫構成岩体の下部層、
葉理明瞭なターカイサイトの暗灰色砂質泥岩主体で
所々にスラブ性の粗粒岩相をはさむ中部層、そし
て砂岩層互層が主体である下層部の3層部に区分
できる。これらの地層は北方を上位として整合関係
で分布している。
2. 砂岩層の一般的な走行は東北東－西南西で、北
に高角度で傾斜しているが、逆転構造や大規模な褶
曲構造が見出される。砂岩層の東側にそれぞれ見られる。
3. 砂岩層分布域内には東西性の特徴的な断層が2
種類認められる。そのうちの1つの断層沿いにはは
ん岩～はん岩が貫入し、もう一方の断層沿いには蛇
紋岩が挟まれている。また砂岩層の東側には、北東
－南西方向の大きな断層が1本走っており、それ以
東では砂岩層は分布しない。
4. 砂岩層の地質時代は、産出するアンモナイト化
石や二枚貝化石相により、アプチアン後期を主体と
して最前期アルビアンにおよぶと考えられる。
5. 砂岩層は岩相や産出する二枚貝化石から、四国
佐川地域の物部川層群土佐加茂層下部層および物部
地域の物部川層群日比原層上部層の下部にそれぞれ
対比される。

引用文献
松本達郎（1974）：地史学、朝倉書店、p.433.
松本達郎・勘米良（1964）：5万分の1地質図帳「日奈久」および同説明書、地質調査所、147p.
田中良一郎・小笠部伸・田代正之・太田喜久・村田弥・松川真樹・中村均（1983）：本邦白亜系における海成・非海成層の対比。化石，31，1-26.
田中良一郎・谷口洋（1976）：下部白亜系砂岩層の
地質学的研究。熊本地学会誌，(53)，2-8，pl.1.
田代正之（1985）：四国秩父層の白亜系下部亜層
の構造断層について－、化石，38，23-35.
田代正之（1993）：日本の白亜紀二枚貝相 Part I；秩
父層“領家層”的白亜紀二枚貝相について。高知
大学学術研，42，105-155.
田代正之（1996）：本邦白亜紀二枚貝群の生物的
分布とそのテクトニズム。月刊地球，18，(11)，
748-754.
田代正之・池田昌久（1987）：熊本県八代山地の下
部白亜系。高知大学学術研，36，71-91.
遠越敬三・元島威（1967）：砂岩町南部の白亜系。熊
本地学会誌, (24), 2-4
上田健・堀川治城・宮田陽一・森下吉郎 (1976)：
下部白亜系宮地層の地質学的研究. 熊本地学会誌, (51), 2-14.

(2001年11月30日受理)

2001年9月22日 日本地質学会第108年学術大会
（金沢大学）にて一部講演
図版 1・2
Asterte (*Tractostqlidia*) *kochiensis* Tashiro and Kozai
 1a. Rubber external cast of right valve, Loc. Tok-04 × 2.5
 1b. Internal mould of right valve, Loc. Tok-04 × 2.5

Myrtea (?) *monobeana* Tashiro and Kozai
 2. Rubber external cast of left valve, Loc. Tok-03 × 3

Limatula nagaoni Hayami
 3. Rubber external cast of right valve, Loc. Tok-15 × 2

Neitheia (Neitheia) ficalhoi (Choffiat)
 4. Rubber external cast of right valve, Loc. Tok-06 × 1.5

Mesosaccella sp.
 5. Internal mould of left valve, Loc. Tok-06 × 3
 6. Internal mould of left valve, Loc. Tok-10 × 3
 7. Internal mould of right valve, Loc. Tok-10 × 3
 8a. Internal mould of left valve, Loc. Tok-03 × 3
 8b. Rubber internal cast of left valve, Loc. Tok-03 × 3

Cosmetodon tomochiensis Tashiro and Matsuda
 9a. Rubber external cast of left valve, Loc. Tok-29 × 2
 9b. Internal mould of left valve, Loc. Tok-29 × 2
 10. Internal mould of both valve, Loc. Tok-17 × 2.5

Parvanussium tosaense Tashiro and Kozai
 11a. Rubber external cast of left valve, Loc. Tok-30 × 1.5
 11b. Rubber internal cast of left valve, Loc. Tok-30 × 1.5

Lucinoma sp.
 12a. Internal mould of right valve, Loc. Tok-03 × 1.5
 12b. external cast of right valve, Loc. Tok-03 × 1.5

Plicatula sp.
 13. Rubber external cast of right valve, Loc. Tok-32 × 1.3
 14. Rubber external cast of left valve, Loc. Tok-32 × 1.3
 15a. Rubber external cast of right valve, Loc. Tok-32 × 1.3
 15b. Rubber external cast of left valve, Loc. Tok-32 × 1.3
 16. Rubber external cast of right valve, Loc. Tok-06 × 1.3

Acanthohoplites sp.
 17. Lateral view, Loc. Tok-06 × 1
 18. Lateral view of a rubber cast taken from the external mould, Loc. Tok-08 × 1.5

Diadochoceras sp. cf. *D. nodosocostatiforme* (Shimizu)
 19. Lateral view of a rubber cast taken from the external mould, Loc. Tok-16 × 1.3
 20. Lateral view of a rubber cast taken from the external mould, Loc. Tok-03 × 1.5

Marshallites sp. cf. *M. miyakoensis* Obata and Futakami
 21. Lateral view of a rubber cast taken from the external mould, Loc. Tok-03 × 1.5
 22. Lateral view of a rubber cast taken from the external mould, Loc. Tok-03 × 1.5.

Dufrenoyia sp.
 23. Lateral view, Loc. Tok-15 × 1.2
図版2

1. 砦用層下部層の礫岩と基盤岩類（緑色岩）との不整合露頭、不整合面はほぼ垂直に立っている（左側：緑色岩 右側：礫岩）。礫岩中には断層が走る（ハンマーの部分）。（図3の②）

2. 砦用層下部層の岩相。巨礫が多量に入っている。

3, 4. 質入岩（ひん岩）の薄片写真中に見られる微文象構造（3 : 単ニコル 4 : 直行ニコル）。長石の結晶中に多数の楔形文字状の石英が連晶し、石英の一部または全部が同一光学的方位をとる。半深成岩の特徴的な構造である。スケールバーは0.2mmを示す。（図3の③）

5. 砦用層中部層の岩相。ターキサイト性の暗灰色泥質泥岩互層を主体とする。

6. 断層沿いに露出する蛇紋岩の露頭。（図3の⑦）

7. 砦用層上部層の砂岩優勢泥岩互層。